Complementary approaches to obtaining thermodynamic parameters from protein ligand systems: Challenges and opportunities and a

case for neutrons

Mona Sarter

CCPBioSim Industry Talk 11th September 2024

Science and Technology Facilities Council

ISIS Neutron and Muon Source

ISIS Neutron and Muon Source

🕑 @isisneutronmuon

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

Science and Technology Facilities Council

ISIS Neutron and Muon Source

💥 🔘 @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

ISIS is a User Facility

Life Science Examples

Clifton, Biochemical Society Transactions, 2021, 49 (4), 1537-154

ISIS Neutron and Muon Source

www.isis.stfc.ac.uk

Sarter et al, J. Phys. Chem. B 2020, 124, 2, 324-335

Barriga et al, https://doi.org/10.1002/adma.202200839

Structure

- ➤ A bit of physics
- Introduction to our model system

Isothermal Titration Calorimetry (ITC)
thermal diffusion forced Rayleigh scattering (TDFRS)
Quasi electic poutron scattering (QENS)

Quasi-elastic neutron scattering (QENS)

Conclusion

ISIS Neutron and Muon Source 🕀 www.isis.stfc.ac.uk

(O) @isisneutronmuon

الس) uk.linkedin.com/showcase/isis-neutron-and-muon-source

$\Delta G = \Delta H - T \Delta S$ Gibb's free Energy Enthalpy Entropy

 $\Delta G = -RTln(\frac{1}{K_d})$

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

(O) @isisneutronmuon

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

ISIS Neutron and

Muon Source

🕀 www.isis.stfc.ac.uk

(O) @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

 \succ It is affected by affinity, enthalpy, and entropy

 \succ There are multiple entropic components

ISIS Neutron and Muon Source

@isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source

Meet our model system

Streptavidin is a homo-tetramer 53.1kDa
4:1 Biotin binding stoichiometry

 $> K_d \approx 1 \cdot 10^{-14}$ M from literature

ISIS Neutron and

Muon Source

🕀 www.isis.stfc.ac.uk

🗶 Ӧ @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Sarter et al, J. Phys. Chem. B 2020, 124, 2, 324-335

Isothermal Titration Calorimetry (ITC)

- How does the technique work
- Some results for streptavidin and biotin
- > How to choose the ideal system for this technique

Provides $\rightarrow \Delta H$ $\rightarrow K_d$ $\rightarrow \Delta G$ $\Rightarrow \Delta S$

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

🗶 Ӧ @isisneutronmuon

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

The energy required to heat the sample cell to the same temperature as the reference cell is constantly measured.

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

(O) @isisneutronmuon

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

uk.linkedin.com/showcase/isis-neutron-and-muon-source lim

Sarter, Dissertation, RWTH Aachen University, 2020

Results from ITC

Time (min)

 $\Delta \overline{H} = -472.1 \pm 47.2 \frac{\text{kJ}}{\text{J}}$ mol

Sample number	Stoichiometry N	$\Delta H \left[\frac{kJ}{mol}\right]$
1	4.3	-367.2
2	4.7	-371.5
3	4.2	-446.9
4	4.6	-367.2
5	4.5	-404.0
6	3.8	-455.1
7	3.7	-462.9
8	3.9	-462.8
9	3.5	-506.3

Sarter, Dissertation, RWTH Aachen University, 2020

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

 \mathbb{X}

(O')

@isisneutronmuon

ISIS Neutron and Muon Source

ITC: Challenges and the ideal system

The ligand must be soluble at high concentrations

- The binding model must be known
- > The binding must be of a suitable strength
- > For neutron scattering the reaction must occur in H_2O and D_2O based solvents
- Very sensitive to temperature changes in the lab
- Potential sensitivity to dilution effects
- Experiments should be repeated for statistics

ISIS Neutron and Muon Source 🕀 www.isis.stfc.ac.uk

(O) @isisneutronmuon

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

Sarter, Dissertation, RWTH Aachen University, 2020

thermal diffusion forced Rayleigh scattering (TDFRS)

> How does the technique work

Some results for streptavidin and biotin

> How to choose the ideal system for this technique

Provides $\succ \Delta S_{surrounding}$ > Qualitative information

ISIS Neutron and Muon Source

www.isis.stfc.ac.uk

@isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source Sarter et al, EPJ Web of Conferences 272, 01016 (2022) QENS/WINS 2022

How does TDFRS work

- Highly sensitive to number and strength of H-bonds
- Measured at different temperatures
- > Temperature grid caused by interferometry $\lambda = 980 \text{ nm}$

ISIS Neutron and

Muon Source

www.isis.stfc.ac.uk

(O) @isisneutronmuon

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

Results from TDFRS

Experiments by Dr. Doreen Niether and Prof. Simone Wiegand

Muon Source

@isisneutronmuon

Sarter et al, EPJ Web of Conferences 272, 01016 (2022) QENS/WINS 2022

ISIS Neutron and uk.linkedin.com/showcase/isis-neutron-and-muon-source

(0)

Results from TDFRS

Experiments by Dr. Doreen Niether and Prof. Simone Wiegand

$$S_T = \frac{D_T}{D}$$

 $A = \left(\frac{\partial n}{\partial c}\right)_{p,T} \left(\frac{\partial n}{\partial T}\right)_{p,c}^{-1} S_T c (1-c)$

- $\succ \Delta S_{hydr}$ has increased
- Less H-bonds between complex than free
- Reduced order and therefore higher entropy

www.isis.stfc.ac.uk

ISIS Neutron and Muon Source

O) @isisneutronmuon

Sarter et al, EPJ Web of Conferences 272, 01016 (2022) QENS/WINS 2022

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

TDFRS: Challenges and the ideal system

- Requires the diffusion coefficient D
- Gives qualitative information on the hydration layer
- Cannot be performed in pure D₂O but measuring different H₂O D₂O ratios allows for extrapolation to pure D₂O
- Can be used to check if change in solvent affects sample

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

(O) @isisneutronmuon

ງ uk.linkedin.com/showcase/isis-neutron-and-muon-source

Quasi-elastic neutron scattering (QENS)

- How does the technique work
- Some results for streptavidin and biotin
- How to choose the ideal system for this technique

ISIS Neutron and

Muon Source

(O) @isisneutronmuon

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

Y. Xu et al, J. Chem. Phys.143, 170901 (2015), DOI: 10.1063/1.4934504

- > Neutrons are neutrally charged
- \succ spin = $\frac{1}{2}$
- Interact with nucleus opposed to electron shell

Hydrogen	1.76	80.2
Deuterium	5.59	2.05
Carbon	5.56	0.00
Nitrogen	11.0	0.50
Oxygen	4.23	0.00

F7-1 -

ISIS Neutron and Muon Source

@isisneutronmuon (O)

اتم uk.linkedin.com/showcase/isis-neutron-and-muon-source

How does QENS work – Quasi-elastic?

How does QENS work – What do we observe?

Science and Technology Facilities Council

ISIS Neutron and Muon Source Elastic scattering

$$|\mathbf{k}_i| = |\mathbf{k}_f| = \frac{2\pi}{\lambda}$$
$$\Delta E = 0$$
$$Q = 2|\mathbf{k}|\sin(\theta) = \frac{4\pi}{\lambda}\sin(\theta)$$

Quasi elastic scattering $|\mathbf{k}_i| \neq |\mathbf{k}_f|$ ΔE small and centred around 0 $\Delta E = \hbar \omega = \frac{h}{\tau} = E_i - E_f$ $= \frac{\hbar^2}{2m_n} (\mathbf{k}_i - \mathbf{k}_f)^2$

Change in energy

Incident angle not necessarily exit angle

What do we observed from the second ball?

What can we deduce for our samples?

- Diffusion at molecular scale
- Aggregate state
- Able to differentiate diffusion and confined dynamics
- Time- and length-scale comparable to MD simulations
- Contrast can be adjusted/ matched

Examples

- Diffusion in MOFs & zeolites, fuel cells, polymers, clays, ionic liquids, …
- Protein dynamics, drug delivery, degree of hydration, water dynamics in cells
- Confinement, glasses

🖉 🔿 @isisneutronmuon

www.isis.stfc.ac.uk

uk.linkedin.com/showcase/isis-neutron-and-muon-source

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

Muon Source

How does QENS work – How does the instrument work?

ISIS Neutron and Muon Source

 \mathbb{X}

(O) @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

How does QENS work – How does the instrum

ISIS Neutron and Muon Source

Results from QENS

lîm

uk.linkedin.com/showcase/isis-neutron-and-muon-source Sarter et al, J

ISIS Neutron and Muon Source

Results from QENS

This amounts to we can separate different dynamics.

Just assign one Lorentzian per dynamic.

ISIS Neutron and Muon Source (isisneutronmuon)

ງ uk.linkedin.com/showcase/isis-neutron-and-muon-source

Results from QENS– Conformational entropy change

 $A_0(q) = e^{-\langle u^2 \rangle \cdot q^2} (1-p) + p, \langle u^2 \rangle$ mean-square displacement MSD

而 uk.linkedin.com/showcase/isis-neutron-and-muon-source

Muon Source

Sarter et al, J. Phys. Chem. B 2020, 124, 2, 324-335

Results from QENS– Apart from entropy

THE REAL PROPERTY OF

SPHERES Streptavidin with Biotin

- Diffusion of particles in solution
- Internal dynamics
- Domain vibrations
- Side chain fluctuations
- Conformational transitions
- Broadening, EISF, MSD

Sarter et al, J. Phys. Chem. B 2020, 124, 2, 324–335

ISIS Neutron and

Muon Source

₩www.isis.stfc.ac.uk

(O) @isisneutronmuon

الس) uk.linkedin.com/showcase/isis-neutron-and-muon-source

Sarter, J. Phys. Chem. B 2023 127 (14), 3241-3247

Results from QENS– Apart from entropy

Sarter et al, J. Phys. Chem. B 2020, 124, 2, 324–335

ISIS Neutron and Muon Source 🕀 www.isis.stfc.ac.uk

(O) @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Sarter, J. Phys. Chem. B 2023 127 (14), 3241-3247

QENS: Challenges and the ideal system \succ The reaction must take place in D₂O \succ The stronger the binding the better What happens on the surface? \succ High concentrations and sample volumes of 10^{-1} (meV)⁻¹ $\approx 1 - 2 \text{ ml}$ 10-3 \succ For neutron scattering the reaction must 0.250.00 0.25 $\hbar\omega$ [meV] occur in H₂O and D₂O based solvents $\sigma_{coh} [b] \sigma_{inc} [b]$ 1.76 Hydrogen 80.2 Deuterium 2.05 5.59 0.00 Carbon 5.56 Nitrogen 11.0 0.50 www.isis.stfc.ac.uk Science and Technology Oxygen 4.23 0.00 Facilities Council @isisneutronmuon **ISIS Neutron and**

uk.linkedin.com/showcase/isis-neutron-and-muon-source

Muon Source

Sarter, J. Phys. Chem. B 2023 127 (14), 3241-3247

Conclusion

- A complementary approach \succ can vastly increase our understanding of a systems components
- Samples need to be stable during experiment

(A)

 ΔG

No one method can answer all these questions

Molecular Dynamics simulations in addition to the experiments would be great

Literature data

 ΔH_{bind}

 $\Delta H_{bind} = -410 \frac{\text{kJ}}{\text{mol}} - T\Delta S_{bind} = 104 \frac{\text{kJ}}{\text{mol}}$

 $\Delta G_{bind} = -306 \frac{\text{kJ}}{-1}$

Muon Source

ISIS Neutron and

www.isis.stfc.ac.uk

@isisneutronmuon

Sarter et al, J. Phys. Chem. B 2020, 124, 2, 324-335

(B)

QENS

 $-T\Delta S_{conf} = 662 \frac{\text{kJ}}{\text{mol}}$

Conclusion

- Simulations were done using code entropy
- The experimental and simulated results match very well

Value (J mol ⁻¹ K ⁻¹)
-4.37 ± 0.59
-2.58 ± 0.43
$\textbf{-6.95} \pm \textbf{0.73}$
-0.67 ± 0.00
-7.32 ± 0.91
$\textbf{-7.99} \pm \textbf{0.91}$

Simulations by Ioana Papa during her Master Thesis (supervised by Sarah Fegan)

ISIS Neutron and Muon Source ((O) @isisneutronmuon

www.isis.stfc.ac.uk

ແກງ uk.linkedin.com/showcase/isis-neutron-and-muon-source

Acknowledgments

- ➢Prof. Jörg Fitter
- ➢ Priv. Doz. Dr. Andreas Stadler
- ➢Prof. Simone Wiegand
- ≻Dr. Bernd König
- ≻Dr. Tobias Schrader
- ≻Dr. Doreen Niether
- ➢Dr. Michaela Zamponi
- ≻Dr. Wiebke Lohstroh

- ➢Dr. Sarah Fegan
- ≻Ioana Papa
- Code Entropy team
- ISIS Molecular Spectroscopy group

ISIS Neutron and Muon Source 🚯 www.isis.stfc.ac.uk

(O) @isisneutronmuon

ງ uk.linkedin.com/showcase/isis-neutron-and-muon-source

